Printed Pages-5

Roll No.

328652(28)

APR-MAY2022

B. E. (Sixth Semester) Examination, 2020

(New Scheme)

(Electronics & Telecommunication Engg. Branch)

ELECTRONIC CIRCUIT DESIGN

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each question is compulsory and attempt any two parts from (b), (c) & (d) of each question.

Unit-I

1.	(a)	What is clamper circuit.	
	(b)	Explain square wave generator with circuit diagram	
		and wave forms.	
	(c)	Describe High Pass RC as differentiator,	

(d) Describe voltage and current sweep circuits in detail. 7

Unit-II

- 2. (a) What is commutating capacitor.
 - (b) Describe collector coupled monostable multivibrator with circuit diagram.
 - (c) The fixed biased Multivibrator shown in below figure uses NPN Si transistors with hfe=20. The circuit parameters are $V_{CC}=12$ V, $V_{BB}=-3$ V, $R_{C}=1$ k Ω , $R_{1}=5$ K, $R_{2}=10$ K. Verify that one transistor is in cut off and other in saturation and find stable state current and voltages. Assume $V_{CEsal}=4V$ and

$$V_{BEsat} = 8 V$$
.

(d) Describe Astable multivibrator with circuit diagram.

Unit-III

3. (a) Define Duty cycle.

2

- (b) In a stable multivibrator $R_A = 2 \cdot 2 \, \mathrm{k}$, $R_B = 3 \cdot 9 \, \mathrm{k}$ and $c = \cdot 1 \, \mu$ F. Determine (i) The positive pulse width (T_c) (ii) The Negative pulse width (T_d) (iii) Free running frequency (f).
- (c) Describe the operation of 5 SS timer in a stable mode with wave form & circuit diagram.
- (d) Draw the circuit diagram of schimitt trigger using 5 SS timer and explain it's operation.

Unit-IV

- 4. (a) What do you mean by bilinear transfer function.
 - (b) Describe all pass circuit. Design a circuit which provides the set of three 60 Hz voltage of equal magnitude but lagging each other in phase by 120° as shown in figure.

(c) Design an amplifier filter having the Bode asymptotic plot shown in figure.

A, dB 102 103 104 105 0 dB W, red/sec

(d) What is Biquad circuit. Derive an expression for low pass filter using 3.0 P AMP biquad circuit.

Unit-V

- 5. (a) Define Bode Sensitivity.
 - (b) Describe sallen and key circuit and it's transfer function:

- (c) Draw the circuit diagram for Delyiannis Friend's circuit and derive an expression for design parameters.
- (d) Consider following specification:

$$\alpha_{\text{max}} = .25 \, \text{dB}$$

$$\alpha_{\text{min}} = 15 \, dB$$

$$Wp = 10,000 \text{ rad/sec}$$

$$W_S = 14,000 \text{ rad/sec}$$

For these specification do the following:

- (i) Determine *n*, the required order of the butterworth low pass filter.
- (ii) Determine the half power frequency W_0 .